Indian Statistical Institute, Bangalore

B. Math.(hons.), Third Year, First Semester Probability-III

Mid Term Examination Maximum marks: 20 Date : 12 September 2024 Time: 2 hours

Answer any 4, each question carries 5 marks.

Kindly ensure your writing is clear and if you are using any results please provide as many details as you can.

1. Let $(\Omega, \mathcal{F}, \mu)$ be a measure space. Define $\widetilde{\mathcal{F}} \equiv \{A : B_1 \subset A \subset B_2 \text{ for some } B_1, B_2 \in \mathcal{F} \text{ satisfying } \mu(B_2 \setminus B_1) = 0\}$. For any $A \in \widetilde{\mathcal{F}}$, set

$$\widetilde{\mu}(A) = \mu(B_1) = \mu(B_2)$$

for any pair of sets $B_1, B_2 \in \mathcal{F}$ with $B_1 \subset A \subset B_2$ and $\mu(B_2 \setminus B_1) = 0$. Then,

- (i) $\widetilde{\mathcal{F}}$ is a σ -algebra with $\mathcal{F} \subset \widetilde{\mathcal{F}}$, and $\widetilde{\mu}$ is well defined,
- (ii) $(\Omega, \widetilde{\mathcal{F}}, \widetilde{\mu})$ is a complete measure space and $\widetilde{\mu} = \mu$ on \mathcal{F} .

(Recall that a measure space $(\Omega, \mathcal{F}, \mu)$ is called complete if for any $A \in \mathcal{F}$ with $\mu(A) = 0$, and for any $B \subset A$, it follows that $B \in \mathcal{F}$. In other words, if A is a null set, then all subsets of A are also in \mathcal{F} .

- 2. Prove or disprove the following statements:
 - (i) If \mathcal{F} is a family of subsets of a set Ω and if A is an element of $\sigma(\mathcal{F})$, then there exists a countable subset C of \mathcal{F} such that $A \in \sigma(C)$.
 - (ii) If $\{\mathcal{F}_n\}_{n\in\mathbb{N}}$ is a sequence of σ -algebras on a given set such that for each $n\in\mathbb{N}, \mathcal{F}_n$ is a proper subset of \mathcal{F}_{n+1} , then $\bigcup_{n\in\mathbb{N}}\mathcal{F}_n$ is always a σ -algebra on the given set.
- 3. Let X be a random variable such that $M_X(t) \equiv \mathbb{E}(e^{tX}) < \infty$ for $|t| < \delta$ for some $\delta > 0$.
 - (i) Show that $\mathbb{E}(e^{tX}|X|^r) < \infty$ for all r > 0 and $|t| < \delta$.
 - (ii) Show that $M_X^{(r)}(t)$, the *r*-th derivative of $M_X(t)$ for $r \in \mathbb{N}$, satisfies

$$M_X^{(r)}(t) = \mathbb{E}(e^{tX}X^r) \text{ for } |t| < \delta.$$

4. Let $\{X_n\}_{n\geq 1}$ be a sequence of random variables on some probability space $(\Omega, \mathcal{F}, \mathbb{P})$.

- (i) If $\sum_{n=1}^{\infty} \mathbb{P}(|X_n| > \varepsilon) < \infty$ for each $\varepsilon > 0$, then $\mathbb{P}(\lim_{n \to \infty} X_n = 0) = 1$.
- (ii) If $\{X_n\}_{n\geq 1}$ are pairwise independent and $\mathbb{P}(\lim_{n\to\infty} X_n = 0) = 1$, then $\sum_{n=1}^{\infty} \mathbb{P}(|X_n| > \varepsilon) < \infty$ for each $\varepsilon > 0$.
- 5. Let $\overline{\mathbb{R}}$ be extended real number and \mathcal{T} be the tail σ -algebra of a sequence of independent random variables $\{X_n\}_{n\geq 1}$ on $(\Omega, \mathcal{F}, \mathbb{P})$ (i.e. $\mathcal{T} = \bigcap_{n=1}^{\infty} \sigma (\{X_j : j \geq n\})$). Then, prove the following results:
 - (i) Let X be a $\langle \mathcal{T}, \mathcal{B}(\overline{\mathbb{R}}) \rangle$ -measurable $\overline{\mathbb{R}}$ -valued random variable from Ω to $\overline{\mathbb{R}}$. Then, there exists $c \in \overline{\mathbb{R}}$ such that

$$\mathbb{P}(X=c)=1.$$

(ii) Let $\mathbb{E}[X_n] = 0$ and $\mathbb{E}[X_n^2] = 1$ for all $n \ge 1$. Let $S_n = X_1 + \dots + X_n, n \ge 1$, and $\Phi(x) = \int_{-\infty}^x \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{y^2}{2}\right) dy, x \in \mathbb{R}$. If $\mathbb{P}(S_n \le \sqrt{nx}) \to \Phi(x)$ for all $x \in \mathbb{R}$, then

$$\limsup_{n \to \infty} \frac{S_n}{\sqrt{n}} = +\infty \ a.s.$$